DESRAJ ESTIMATOR - PROBABILITY PROPORTION TO SIZE ORDERED SAMPLING
GADHA T
2148131
DEPT OF STATISTICS
CHRIST DEEMED TO BE UNIVERSITY, BANGALORE
INTRODUCTION
An estimator in case of 2 draws.
Let y1 and y2 be the values of units drawn at the first and second draw.
Let pi be the probability of selection of unit.
APPLICATIONS
#Analysis:
#To obtain the sum of the area under lime (in acres).
s=sum(`Area Under lime(in acres)`)
s
## [1] 497.66
#To find the
probability of the values of the area under lime (in acres).
pi=(`Area Under lime(in acres)`)/s
pi
## [1]
0.0658481694 0.0160149500 0.0012458305 0.0313667966 0.0861029619
## [6]
0.0804364426 0.0188683037 0.0127195274 0.0101474903 0.1899891492
## [11] 0.1079250894 0.0013463007 0.0016477113
0.0043202186 0.0008640437
## [16] 0.2478800788 0.0005827272 0.0060282120
0.0080376160 0.0040188080
## [21] 0.0124783989 0.0921311739
#To combine the
dataframe and their respective probabilities.
d=cbind(Data,pi)
d
##
S.No. of villages Area Under lime(in acres) No. of bearing lime trees
## 1
1 32.77 2328
## 2
2 7.97 754
## 3
3 0.62 105
## 4
4 15.61 949
## 5
5 42.85 3091
## 6
6 40.03 1736
## 7
7 9.39 840
## 8
8 6.33 311
## 9
9 5.05 0
## 10
10 94.55 3044
## 11
11 53.71 2483
## 12
12 0.67 128
## 13
13 0.82 102
## 14
14 2.15 60
## 15
15 0.43 0
## 16
16 123.36 11799
## 17
17 0.29 26
## 18
18 3.00 317
## 19
19 4.00 190
## 20
20 2.00 180
## 21 21 6.21 752
## 22
22 45.85 3091
##
pi
## 1
0.0658481694
## 2
0.0160149500
## 3
0.0012458305
## 4
0.0313667966
## 5 0.0861029619
## 6
0.0804364426
## 7
0.0188683037
## 8
0.0127195274
## 9
0.0101474903
## 10 0.1899891492
## 11 0.1079250894
## 12 0.0013463007
## 13 0.0016477113
## 14 0.0043202186
## 15 0.0008640437
## 16 0.2478800788
## 17 0.0005827272
## 18 0.0060282120
## 19 0.0080376160
## 20 0.0040188080
## 21 0.0124783989
## 22 0.0921311739
#To obtain a sample using the
method of PPSWOR & estimate total no.of bearing lime trees using ordered
Desraj Estimator
library(fpest)
set.seed(100)
ppswor=d[sample(1:nrow(d),5,replace =
F),]
ppswor
##
S.No. of villages Area Under lime(in acres) No. of bearing lime trees
## 10
10 94.55 3044
## 6
6 40.03 1736
## 16 16 123.36 11799
## 19
19 4.00 190
## 14
14 2.15 60
##
pi
## 10 0.189989149
## 6
0.080436443
## 16 0.247880079
## 19 0.008037616
## 14 0.004320219
desraj(ppswor$`No. of
bearing lime trees`,ppswor$pi)
## $est
## [1] 25473.65
##
## $estvar
## [1] 16074751
##
## $tvals
## [1] 16021.97 20525.86 39507.47 27965.70 23347.23
Conclusion: The
estimate of the total number of bearing lime trees is 25474.
#To find the bound on the error of
estimation.
t=qt(0.975,4)
t
## [1] 2.776445
var=16074751
se=sqrt(var)
se
## [1] 4009.333
Bound_Error=t*se
Bound_Error
## [1] 8018.666
INTERPRETATIONS
DEMERITS
It appears in PPS sampling that such procedure would give biased estimators as the larger units are over-represented and the smaller units are under-represented in the sample. This will happen in the case of the sample mean as an estimator of the population mean where all the units are given equal weight. Instead of giving equal weights to all the units, if the sample observations are suitably weighted at the estimation stage by taking the probabilities of selection into account, then it is possible to obtain unbiased estimators.
Comments